

Note: Although these specifications are based on JIS they also apply to ISO and DIN threads.

Some comments added by Maryland Metrics

<Exterior features of thread ridge>

(1) Flank :	Thread face (excluding crest and root of thread profile)
(2) Crest :	The tap surface joining the
(_) 0.000	two sides or flanks of a
	thread
(3) Root :	The bottom surface joining
	the flanks of two adjacent
	flanks
(4) Angle of thread	: Angle between adjacent
	flanks measured at the
	cross section of screw
	thread - including the axis of
	the screw thread
(5) Flank angle :	The angle between the
	individual flank and the
	perpendicular to the axis of
	the thread measured in the
	axial plane
(6) Pitch :	The distance from a point
	on one thread to a
	corresponding point on the
	next thread measured
	parallel to the axis
(7) Lead :	The distance a screw thread
	advances axially in one
	complete turn
(8) Lead angle :	Angle formed by a helix
	passing a point on a flank
	and plane perpendicular to the

Figure 1 Basic designation of thread (1)

Figure 2 Basic designation of thread (2)

and plane perpendicular to the axis of the screw thread (applies to parallel thread)

- (9) Major diameter of external thread : Diameter of a virtual cylinder which touches the crest of the external thread
- (10) Minor diameter of internal thread : Diameter of a virtual cylinder which touches the crest of the internal thread
- (11) Minor diameter of external thread : Diameter of a virtual cylinder which touches the root of the external thread
- (12) Major diameter of internal thread : Diameter of a virtual cylinder which touches the root of the internal thread
- (13) Pitch diameter : On a straight screw thread, the diameter of an imaginary cylinder where the width of the thread and the width of the space threads are equal.

(14) Simple pitch diameter :	Diameter of an imaginary cylinder when a thread groove width, which is determined by the direction of an axis of screw thread,
	simple pitch diameter equals the pitch diameter
(15) Virtual pitch diameter :	Virtual pitch diameter of a thread with a reference pitch and
()	reference flank angle that fit without interference and play in the
	thread over the given thread engagement
(16) Height of Thread :	Distance between a virtual cylinder that touches a crest of the
	thread and a virtual cylinder that touches a root; determined by
	measuring perpendicular to the axis of the screw thread.
(17) Height of fundamental	triangle : Right angle distance between a virtual cylinder (including
	the helix) formed by extending and intersecting flanks of thread to
	the direction of crest and a virtual cylinder formed by extending and
	intersecting flanks of thread to the direction of root
(18) Crest truncation :	The distance measured perpendicular to the axis, between the
	sharp crest and the cylinder or cone which bounds the actual root.
(19) Root truncation :	The distance measured perpendicular to the axis, between the
/	sharp root and the cylinder or cone which bounds the actual root.
(20) Thread overlap :	Distance measured perpendicular to the axis of the screw thread
	between the virtual cylinder of the major diameter of external thread
	and the virtual cylinder of the minor diameter of internal thread, in
	external thread and internal thread which mutually fit in concentric.
(21) Percentage of thread e	ngagement : Ratio of thread overlap in product against reference of
(22) Longth of angegrament	Inread overlap
(22) Length of engagement	external thread and internal thread are fit and mutually contact
	Lisually this length equals the length of internal thread and includes
	the chamfers of both ends of the internal thread
(23) Threaded portion	Threaded portion of tap that can be effectively used for screw
	thread. The incomplete chamfered thread portion is included

<Types and Applications>

Angle of thread is 60°. The Crest is flat, and there is clearance at the root. External thread and internal thread engage well. Larger root radius and lower thread height enable easy screw thread processing and increase thread screw strength. The Major diameter of external thread and pitch are specified by a simple numerical value (most commonly measured in millimeters).

The thread profile is same as for metric thread. Major diameter of external thread is measured in inches and the number thread ridges is represented by the number of thread ridges per inch.

Parallel pipe thread JIS B0202	$P = \frac{25.4}{n}$ H=0.960491P H_1=0.640327P r=0.137329P d_2=d - h d_1=d - 2h D=d D_1=d_1 D_2=d_2
--------------------------------------	--

Pipe thread mainly for mechanical coupling. It is specified according to JIS and ISO R228. For the US method, some threads have a 60° angle.

///////

<Tolerance>

The following are the requirements for proper external and internal thread engagement:

1. External thread and internal thread must have sufficient contact at the flank

2. External thread and internal thread must have enough engagement. [SAME AS ABOVE!] In order to meet these requirements, JIS uses classes to define the limits of size and tolerance for the major and minor diameter of internal thread, pitch diameter, and the major and minor diameter of external thread.

Tolerance Class

The reason for setting tolerance in thread is:

- 1. The ensure compatibility
- 2. Limit the quality within a given range

Factors that effect the quality of screw thread include:

- 1. material: type, heat processing, surface processing, uniformity, etc...
- shape: root radius, incomplete thread, roundness, surface roughness, concentration of stress
- 3. detentions: major diameter, pitch diameter, and minor diameter.

Tolerance class of thread ridge is primarily determined by dimensions.

Nam	ame			Close			
Types	Group						
			First	Second	Third		
Metric screw thread (M)	External thread	JIS	4h	6g	8g		
	OSI thread	4H, 5H	5H, 6H	7H			
Unified screw thread (U)	External thread	JIS ISO	3A	2A		1A	
	Internal thread	JIS ISO	3B	2B		1B	
Whitworth screw thread (W)				Second	Third	Fourth	
Use			Conforming engagement	Clamping general machine	General service for general machine	Regular bolt	

Table 3

Angle Error

The difference between the actual angle of thread and the prescribed angle of thread. Angles larger than the prescribed angel are " plus", while angles smaller than the prescribed angle are "minus". It doubles half angle error.

Flank angle error : Difference between the actual flank angle and prescribed flank angle Half angle error of thread : Flank angle error at point where thread profile is symmetrical to the center line of the thread ridge.

Figure 3 Angle Error Examples

Pitch Error

The difference between the actual pitch and the prescribed pitch. Pitch that is larger than the prescribed pitch is " plus", while pitch that is smaller than the prescribed pitch is "minus". Generally this is for one pitch, but some is for two pitches.

Pitch error includes:

Simple pitch error :	Pitch error for one pitch
Cumulative pitch error :	Total pitch error between thread ridges which mutually depart two
	pitches or more.
Progressive pitch error	Pitch error that simple pitch error is positive or negative
Periodical pitch error :	Pitch error that simple pitch periodically increases and decreases.

<ISO and Former JIS for Pipe Thread>

In 1982 the JIS for pipe threads was revised and PT and PF which were prescribed by that time, have been in the Appendix. R and G are included in the main body of the standard. For taps, as in the case with pipe threads, PT PS and PF have been in the Appendix. Rc, Rp, and G are in the main body of the standard.

Compatibility between a tap, die, and gauge of each screw thread are shown in the following table.

Table 4

Group	Types	ISO Symbol	Compatibility	Reference	
Tap	Parallel internal thread for tightness	Rc	Compatible using second class tap for PT - short or long type	Precision of screw thread	
	Taper internal thread for tightness	Rp	Compatible using second class tap for PS	compatible, but there is a	
	Parallel internal thread for mechanical coupling	G	Compatible using second class tap for PS	the shape of the tap.	
Die	Taper external thread for tightness	R	Compatible using die for PT		
	Parallel external thread for mechanical coupling	G	Compatible using die for PF		
Gauge	Taper external thread for tightness		PT incompatible		
	Parallel internal thread for tightness	Rp	PS incompatible (Judged by tapered plug)	D''lle se st	
	Taper internal thread for tightness	Rc	PT incompatible	Different gauge precision and shape	
	Parallel internal thread for mechanical coupling	G	PF incompatible		
	Parallel internal thread for mechanical coupling		PF incompatible		

Note: JIS PT = BSPT JIS PF = BSPF

copyright 2002 maryland metrics/osg corporation