UNIVERSAL THREAD GAGE REFERENCE GUIDE

Distributed by:
Gage Crib Worldwide Inc
6701 Old 28th St SE, Suite B
Grand Rapids, MI 49546-6937 USA
Phone: 001.616.954.6581
Web: www.gagecrib.com

KNOW YOUR THREADS, INSIDE & OUT
Table of Contents

SECTION 1:
Fundamentals of Screw Thread Technology 4 - 7

SECTION 2:
Definitions and Terminology .. 8 - 11

SECTION 3:
Gage Design Contacts ... 12 - 13

SECTION 4:
Technical Considerations .. 14 - 23

SECTION 5:
Plating, Metric and RFQ ... 24 - 27
Screw Thread Designation

EXAMPLE: .3125 - 24 UNJF - 3A (B)

- **.3125** = Nominal Diameter = Maximum Major Diameter
- **24** = Number of threads per inch
- **UN** = Unified National (60° – V-thread)
- **J** = Controlled root radius — High Strength
 (Minor diameter increased from UN to UNJ.)
- **F** = Fine thread series
- **3** = Thread class
- **A** = External thread
- **B** = Internal thread

Screw Thread Assembly

![Screw Thread Assembly Diagram](image-url)
Functional Diameter Size

Pitch Diameter Size + Variations of Thread Elements and Characteristics = Functional Diameter Size

The Functional diameter size is the Pitch diameter size plus the cumulative effect of variations in lead, (including uniformity of helix) flank angle, taper, and roundness. The Functional size is the measured value of the maximum material size of either a product internal or external screw thread.

Pitch Diameter Size

The Pitch diameter size is defined as the diameter of a cylinder that passes through the thread profile of either a product internal or external screw thread to make the widths of thread ridge and thread groove equal on both sides of the thread. The Pitch diameter is the measured value of the minimum material limit of size of either a product internal or external screw thread.
5.1.3. **SYSTEM 21. - GO/NO GO GAGING**

5.1.3.1. System 21 provides for interchangeable assembly with functional size control at the maximum material limits within the length of standard gaging elements; and also control of characteristics identified as NOT-GO functional diameters or as HI (Internal) and LO (External) functional diameters. These functional gages provide some control at the minimum material limit when there is little variation in thread form characteristics such as lead, flank angle, taper and roundness.

5.1.4 **SYSTEM 22. - VARIABLES INDICATING TYPE GAGING**

5.1.4.1. System 22 provides for interchangeable assembly with functional size control at the maximum material limits within the length of standard gaging elements; and also control of the minimum material size limits over the length of the full thread. Other thread characteristics such as lead, flank angle, taper and roundness variations are confined within these limits with no specific control of their magnitudes. For UNJ and MJ external threads, control is also provided for the thread root radius and rounded root minor diameter.

5.1.5 **SYSTEM 23. - SAFETY CRITICAL**

5.2 **ACCEPTABILITY.**

Screw thread acceptability criteria are in accordance with Section 6 of ASME B1.3M-1992. Also see subsection 5.7.

Other Reference Standards

- **ASME B1.1** – Unified Inch Screw Threads.
- **ASME B1.2** – Gages and Gaging for Unified Inch Screw Threads.
Classes of threads are differentiated by the amount of tolerance and allowance specified. Indicating gaging is typically mastered at maximum material condition. This is the minimum Pitch diameter tolerance limit for I.D. threads and the maximum Pitch diameters tolerance limit for O.D. threads.
Classes of threads are differentiated by the amount of tolerance and allowance specified. Indicating gaging is typically mastered at maximum material condition. This is the minimum Pitch diameter tolerance limit for I.D. threads and the maximum Pitch diameters tolerance limit for O.D. threads.
Screw Thread
The Screw Thread is a ridge, usually of uniform section and produced by forming a groove as a helix on the external or internal surface of a cylinder, or as a conical spiral on the external or internal surface of a cone. A screw thread formed on a cylinder is known as a straight or parallel thread, to distinguish it from a tapered thread that is formed on a cone.

A thread is a portion of a screw thread encompassed by one ridge wrapped around a cylinder or cone for one complete turn.

Single Start Thread
A single start thread is one having **one ridge** wrapped around a cylinder or cone for the total length.

Multiple-Start Thread
A multiple-start thread is one that has **two or more ridges** wrapped around a cylinder or cone for the total length.

External Thread
An external thread is on a cylindrical or conical external surface (reference Figures 1, 2 and 3).
The flank (or side) of the ridge. The flank surface intersection with an axial plane is theoretically a straight line.

The crest is that surface of the thread that joins the flank of the thread and is farthest from the cylinder or cone from which the thread projects.

The root is that surface of the thread that joins the flanks of adjacent thread forms and is identical with or immediately next to the cylinder or cone from which the thread projects.

A thread is a right-hand thread if, when viewed axially, it winds in a clockwise and receding direction. A thread is considered right-hand unless specifically shown otherwise.

A thread is a left-hand thread if, when viewed axially, it winds in a counterclockwise and receding direction. All left-hand threads are designated LH.

An internal thread is on a cylindrical or conical internal surface.
Definitions and Terminology

Maximum Material Condition
The condition where the product screw thread contains the maximum amount of material.

Minimum Material Condition
The condition where the product screw thread contains the minimum amount of material.

Tolerance
The total amount of variation permitted for the size of a dimension. It is the difference between the maximum limit of size and the minimum limit of size for a given thread size.

Allowance
The difference between the design (maximum material) size and the basic size.

Basic Size
The basic size is that size from which the limits of size are derived by the application of allowances and tolerances.

Design Size
The design size is the basic size with allowance applied, from which the limits of size are derived by the application of tolerance. If there is no allowance, the design size is the same as the basic size.

Nominal Size
The nominal size is the designation that is used for general identification of the diameter.

Thread series
Thread series are groups of diameters/pitch combinations distinguished from each other by the number of threads per inch applied to specific diameters.

Classes of Thread
Classes of threads are distinguished from each other by the amount of tolerance or allowance specified.
Pitch

Pitch is not pitch diameter, threads per inch (TPI), nor is it LEAD, but it is the axial distance defined in (x,y) between any point on a thread to the corresponding point on the adjacent thread.

\[
Pitch = \frac{\text{Number of thread starts}}{\text{Number of threads per inch}}
\]

Lead

Lead is the axial advance per unit rotation for a given pitch distance. Pitch equals lead when the thread form is ideal.

Major Cylinder

The major cylinder bounds the crest of an external straight thread or the root of an internal straight thread.

Minor Cylinder

The minor cylinder bounds the root of an external straight thread or the crest of an internal thread.

Pitch Cylinder

The pitch cylinder is one of such diameter and location of its axis that its surface would pass through a straight thread in such a manner as to make the width of the thread ridge and the thread groove equal.

Thread Axis

The thread axis is the axis of its pitch cylinder.

Actual Size

An actual size is a measured size.

REFERENCE: ASME B1.7M
UN GAGE PROFILE CONTACTS

Gage Contact Profile for
Functional Diameter Size Measurements

- Functional Contact
- Product External Thread
- Functional Contact

Gage Contact Profile for
Pitch Diameter Size Measurements

- P.D. Vee Contact
- Product External Thread
- P.D. Cone Contact
GAGE PROFILE CONTACTS

Gage Contact Profile for Functional Diameter Size Measurements

FUNCTIONAL DIAMETER SIZE

Gage Contact Profile for Pitch Diameter Size Measurements

PITCH DIAMETER SIZE
INTERNAL UN GAGE PROFILE CONTACTS

Gage Contact Profile for Functional Diameter Size Measurements

Gage Contact Profile for Pitch Diameter Size Measurements
INTERNAL GAGE PROFILE CONTACTS

Gage Contact Profile for Functional Diameter Size Measurements

Gage Contact Profile for Pitch Diameter Size Measurements

Distributed by: Gage Crib Worldwide Inc
6701 Old 28th St SE, Suite B
Grand Rapids, MI 49546-6937 USA
Phone: 001.616.954.6581 Web: www.gagecrib.com
Product Screw Thread Elements & Characteristics

- LEAD
 - Long
 - Short
 - Includes helical deviation "drunk thread"

- FLANK ANGLE
 - Plus
 - Minus

- TAPER
 - Front
 - Back

- OUT OF ROUND
 - Even lobe
 - Odd lobe

- MAJOR DIAMETER

- PITCH DIAMETER

- MINOR DIAMETER
INDICATING THREAD GAGING

Gage Contact Designs

- Pitch Diameter Size – Best Wire Rolls (120°)
- Functional Diameter Size – Multi-Rib Rolls (120°)
- Functional Diameter Size – Full Form Segments (180°)

Product Screw Thread Elements & Characteristics

- LEAD
 - Long
 - Short
 - Includes helical deviation
 "drunk thread"
- FLANK ANGLE
 - Plus
 - Minus
- TAPER
 - Front
 - Back
- OUT OF ROUND
 - Even lobe
 - Odd lobe
- MAJOR DIAMETER
- PITCH DIAMETER
- MINOR DIAMETER
Anatomy of a UN or UNJ Screw Thread

- **H** = Height of the Fundamental Triangle: \((\cos 30^\circ / \text{TPI})\) or \((\cos 30^\circ \times P)\)
- FLANK ANGLES are made up of the two half angles of 30° each for the 60° included angle.
- **MAJOR DIAMETER** is at \(P/8\) or 0.125\(P\)
- **PITCH DIAMETER** is at \(P/2\) or 0.500\(P\)
- **MINOR DIAMETER** is at \(P/4\) or 0.250\(P\) for UN or UNJ is at 5\(P/16\) or 0.3125\(P\)
- **TPI** = Number of Threads per Inch
- **N** = Number of Thread Starts
- **P** = Pitch \(\quad P = N/\text{TPI}\)
Lead is the axial advance per unit rotation for a given pitch distance.
A virtual variation in effective diameter also occurs if the flank angle θ deviates from its specified value.

Reference: Sidders; *Guide to World Screw Threads*, page 212, Figure 12.
To measure Taper:
Use the Pitch diameter gage (cone and vee) and measure at positions along the length of thread without rotating the part. Any deviation of the dial indicator needle will tell the direction and magnitude of the tapered condition.
To measure Out-of-Round:
Use the 180° Functional segment to capture the full magnitude of an egg-shaped (even lobe) out-of-round. Use the 120° cone and vee or multi-rib roll contacts for a tri-lobe (odd lobe) out-of-round. When using the Functional diameter gage (multi-rib or segment) rotate the part to observe the largest indicated value for O.D. and the smallest value for I.D. threads. When using the Pitch diameter gage (cone and vee) rotate the part to observe the smallest indicated value for O.D. and the largest value for I.D. threads.
To measure Lead:
Use the 180° Functional segment or the 120° Functional multi-rib roll. Compare the indicated values for product full engagement, then the product's first full thread. The first full thread is usually the second pitch in from the end. The difference between the two indicated values is the total effect of diametral lead variation with respect to the pitch diameter tolerance.

NOTE: Multi-rib (zero lead) functional rolls do not detect a helical deviation (drunk thread).
To measure Flank Angle:
Use the Functional gage contact (full form segment or multi-rib roll) and a Pitch diameter gage contact (cone and vee). Engage the product’s first full thread functional measurement and compare it with the measurement of the same thread on the Pitch diameter gage. The difference between both indicated values represents the diametral effect of flank angle variation with respect to Pitch diameter tolerance.
DIFFERENTIAL GAGING – System 22

1. **Functional Diameter Size**

 The quality of the thread form is ideal. The thread size is positioned at the mean of the Pitch diameter tolerance. This product passes Systems 21, 22 and 23.

2. **Functional Diameter Size**

 The quality of the thread form is poor. However, it is still within acceptable Pitch diameter tolerance limits. This product passes Systems 21 and 22. May not pass System 23.

\[\text{\(\nabla\)} = \text{Maximum PD Tolerance Limit} \quad \text{\(\nabla\)} = \text{Minimum PD Tolerance Limit} \]
3. **Functional Diameter Size**

The quality of the thread form is poor. Functional diameter size has exceeded the maximum material limit. This product may not assemble. Product fails Systems 21, 22 and 23.

4. **pitch Diameter Size**

The quality of the thread form is poor. Pitch diameter size has exceeded minimum material limit. This product fails Systems 22 and 23, but may pass System 21.
Effect on Pitch Diameter with respect to
the addition of Plating and Coating
Normal to Surface

Effect on Functional Size with respect to
the addition of Plating and Coating
on Lead Variation
ISO Metric Threads
ISO Basic Designations

SIZE is designated by letter M followed by NOMINAL SIZE & PITCH (both in mm) separated by sign X.

EXAMPLE: M16X2

<table>
<thead>
<tr>
<th>METRIC THREAD SIZE</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1.6X0.35</td>
<td></td>
</tr>
<tr>
<td>M1.8X0.35</td>
<td></td>
</tr>
<tr>
<td>M2X0.4</td>
<td></td>
</tr>
<tr>
<td>M2.2X0.45</td>
<td></td>
</tr>
<tr>
<td>M6X1</td>
<td>Coarse</td>
</tr>
<tr>
<td>M7X1</td>
<td>Fine</td>
</tr>
<tr>
<td>M8X1.25</td>
<td>Coarse</td>
</tr>
<tr>
<td>M8X1</td>
<td>Fine</td>
</tr>
<tr>
<td>M16X2</td>
<td>Coarse</td>
</tr>
<tr>
<td>M16X1.5</td>
<td>Fine</td>
</tr>
<tr>
<td>M18X2.5</td>
<td>Coarse</td>
</tr>
<tr>
<td>M18X1.5</td>
<td>Fine</td>
</tr>
</tbody>
</table>

To convert MM Pitch to TPI

\[
25.4 / \text{Pitch} = \text{TPI}
\]

EXAMPLES:

- 2 mm = 12.70 TPI
- .35 mm = 72.57 TPI
ISO Metric Threads
ISO Product Tolerance Symbols

GRADES - DESIGNATED BY
NOS. 3 4 5 6 7 8 9
NO.6 MEDIUM GRADE

5 INTERNAL
GRADES

3
4
5h
6g
7
8e
9

7 EXTERNAL
GRADES

3
4
5
6
7
8
9

5 INTERNAL
GRADES

8G
7
6H
5H
H

7 EXTERNAL
GRADES

POSITION - DESIGNATED BY
LETTERS e G g H h
LOWER CASE = EXTERNAL
ALLOWANCES (EXTERNAL)
e = LARGE
G = SMALL
h = NONE

EXAMPLES
M6X1.5H M6X1-6H M6X1-8G
M6X1.5h M6X1-6g M6X1-8e
KNOW YOUR THREADS, INSIDE & OUT